Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Electron. j. biotechnol ; 44: 41-46, Mar. 2020. tab, ilus
Article in English | LILACS | ID: biblio-1087698

ABSTRACT

Background: The main objective of this study was to isolate fungi associated with Anthopleura xanthogrammica and measure their antimicrobial and enzymatic activities. A total of 93 fungal strains associated with A. xanthogrammica were isolated in this study, of which 32 isolates were identified using both morphological characteristics and internal transcribed spacer (ITS) sequence analysis. The antibacterial activities of 32 fungal isolates were tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Edwardsiella tarda, Vibrio harveyi, Fusarium oxysporum, and Pyricularia oryzae by agar diffusion assay. Extracellular hydrolytic enzyme activities of the fungal isolates were determined by agar diffusion assays. Enzyme activities were detected from clear halo size. Results: The isolated fungi belonged to 18 genera within 7 taxonomic orders of 1 phylum. The genera Aspergillaceae were the most diverse and common. The antimicrobial activities of 32 isolates were evaluated, and 19 (59.4%) of fungi isolate displayed unique antimicrobial activities. All fungal strains displayed at least one enzyme activity. The most common enzyme activities in the fungi isolates were amylase and protease, while the least common were pectinase and xylanase. Conclusions: This is first report on the sea anemone-derived fungi with antimicrobial and enzyme activities. Results indicated that sea anemone is a hot spot of fungal diversity and a rich resource of bioactive natural products.


Subject(s)
Aspergillus/isolation & purification , Sea Anemones/microbiology , Anti-Bacterial Agents/isolation & purification , Peptide Hydrolases/metabolism , Phylogeny , Polygalacturonase/metabolism , Aspergillus/enzymology , Aspergillus/genetics , Bacteria/drug effects , DNA, Ribosomal Spacer , Biodiversity , Fungi/isolation & purification , Fungi/genetics , Amylases/metabolism , Anti-Bacterial Agents/pharmacology
2.
Braz. arch. biol. technol ; 63: e20190127, 2020. graf
Article in English | LILACS | ID: biblio-1132169

ABSTRACT

Abstract Bioprocess studies have been highlighted due to the importance of physiological processes and industrial applications of enzymes. The potential of peptidase production from Aspergillus section Flavi using different amino acids as a supplemental nitrogen source was investigated. A production profile revealed that amino acids had positive effects on peptidase production when compared to the control without amino acids. Optimal production (100 U/mL) was obtained with Arginine amino acid in 96 h of fermentation. Extracellular peptidase from Aspergillus section Flavi was identified in submerged bioprocesses by in situ activity. Biochemical studies revealed that the maximum activities of the enzyme extract were obtained at pH 6.5 and a temperature of 55°C. The inhibition by EDTA and PMSF suggests the presence of more than one peptidase while the Ni2+ and Cu2+ had a negative influence on the enzyme activity. When the crude extract was reversibly immobilized on ionic supports, DEAE-Agarose and MANAE-Agarose the derivative showed different profiles of thermal and pH stabilities. Hence, this study revealed the basic properties and biochemical characteristics that allowed the production improvement of this class of enzyme. Moreover, with known properties stabilization and immobilization process is required to further explore its biotechnological capacities.


Subject(s)
Peptide Hydrolases/biosynthesis , Aspergillus/enzymology , Amino Acids/administration & dosage , Arginine , Sepharose , Enzyme Inhibitors
3.
Arq. bras. med. vet. zootec. (Online) ; 71(1): 204-210, jan.-fev. 2019. tab, graf
Article in Portuguese | LILACS, VETINDEX | ID: biblio-989355

ABSTRACT

Aspergillus fumigatus, A. flavus e A. niger são os mais importantes agentes etiológicos da aspergilose, relevante micose aviária, com tratamento ineficaz e altas taxas de mortalidade. Em vista da importância da aspergilose, da necessidade de prospectar novos fármacos e do potencial terapêutico do óleo essencial de Origanum vulgare L. (OEO), o orégano, objetivou-se avaliar a sensibilidade in vitro de isolados clínicos de Aspergillus spp. em relação ao OEO. O óleo foi obtido por hidrodestilação em Clevenger, e a análise química realizada por cromatografia de massa (GC/MS). Observaram-se 15 diferentes compostos ativos, sendo 4-terpineol, hidrato de sabinene e timol os majoritários. Nos testes de microdiluição em caldo (Reference..., 2008), todos os isolados (n= 23) foram sensíveis ao OEO: A. fumigatus teve CIM entre 28,125mg/mL (0,1875%) e 450mg/mL (3,0%), A. flavus entre 112,5mg/mL (0,75%) e 450mg/mL, e A. niger 112,5mg/mL. CFM variou de 112,5mg/mL a 450mg/mL nos isolados de A. fumigatus, de 225mg/mL (1,5%) a 450mg/mL em A. flavus, e foi de 450mg/mL em A. niger. CIM e CFM foram idênticos em 6/14 isolados, o que demonstra que o óleo com a mesma concentração pode ter capacidade fungistática e fungicida. CIM 90 correspondeu à CIM máxima. Os resultados demonstram a atividade anti-Aspergillus do OEO, com CIM 90 de 450mg/mL (3%).(AU)


Aspergillus fumigatus, A. flavus and A. niger are the most important etiological agents of aspergillosis, a relevant avian mycosis, with innefective treatment and high mortality rates. Due the importance of aspergillosis, the necessity of prospection of new drugs and the therapeutic potential of the essential oil of Origanum vulgare L. (OEO), popularly known as oregano, aims to evaluate the in vitro sensitivity of Aspergillus spp. opposing to OEO. The oil was obtained by hydrodistillation in Clevenger, and the chemical analysis performed by mass chromatography (GC/MS). 15 different active compounds were observed, being 4-terpineol (18.4%), sabinene hydrate (15.6%) and thymol (13.6%), the majority components. In the in vitro susceptibility test, all strains showed sensitivity to OEO, MIC of Aspergillus fumigatus ranged from 28,125mg/mL (0,1875%) to 450mg/mL (3,0%), A. flavus 112,5mg/mL (0,75%) to 450mg/mL, and A. niger 112,5mg/mL. MFC ranged from 112,5mg/mL to 450mg/mL in the A. fumigatus isolates, 225mg/mL (1,5%) to 450mg/mL in A. flavus, and 450mg/mL for A. niger. The MIC and FMC values were identical in 6/14 of the isolated subjects, demonstrating that the oil with the same concentration can have fungistatic and fungicidal capacity. The results demonstrates anti-Aspergillus activities of OEO with CIM90 de 450mg/mL (3%).(AU)


Subject(s)
Aspergillus/enzymology , Oils, Volatile/chemical synthesis , Origanum/analysis , Noxae
4.
Braz. j. microbiol ; 47(1): 143-149, Jan.-Mar. 2016. tab, graf
Article in English | LILACS | ID: lil-775118

ABSTRACT

Abstract Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation.


Subject(s)
Aspergillus/enzymology , Lipase/metabolism , Cations, Divalent/metabolism , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Enzyme Activators/analysis , Enzyme Inhibitors/analysis , Hydrogen-Ion Concentration , Lipase/chemistry , Lipase/isolation & purification , Molecular Weight , Mercaptoethanol/metabolism , Metals/metabolism , Temperature
5.
Braz. j. microbiol ; 46(4): 1269-1277, Oct.-Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769645

ABSTRACT

Abstract A thermohalophilic fungus, Aspergillus terreus AUMC 10138, isolated from the Wadi El-Natrun soda lakes in northern Egypt was exposed successively to gamma and UV-radiation (physical mutagens) and ethyl methan-sulfonate (EMS; chemical mutagen) to enhance alkaline cellulase production under solid state fermentation (SSF) conditions. The effects of different carbon sources, initial moisture, incubation temperature, initial pH, incubation period, inoculum levels and different concentrations of NaCl on production of alkaline filter paper activity (FPase), carboxymethyl cellulase (CMCase) and β-glucosidase by the wild-type and mutant strains of A. terreus were evaluated under SSF. The optimum conditions for maximum production of FPase, CMCase and β-glucosidase were found to be the corn stover: moisture ratio of 1:3(w/v), temperature 45 °C, pH range, 9.0–11.0, and fermentation for 4, 4 and 7 day, respectively. Inoculum levels of 30% for β-glucosidase and 40% for FPase, CMCase gave the higher cellulase production by the wild-type and mutant strains, respectively. Higher production of all three enzymes was obtained at a 5% NaCl. Under the optimized conditions, the mutant strain A. terreus M-17 produced FPase (729 U/g), CMCase (1,783 U/g), and β-glucosidase (342 U/g), which is, 1.85, 1.97 and 2.31-fold higher than the wild-type strain. Our results confirmed that mutant strain M-17 could be a promising alkaline cellulase enzyme producer employing lignocellulosics especially corn stover.


Subject(s)
Aspergillus/enzymology , Aspergillus/metabolism , Cellulases/metabolism , Mutagenesis , Zea mays/metabolism , Aspergillus/drug effects , Aspergillus/radiation effects , Culture Media/chemistry , Egypt , Ethyl Methanesulfonate , Hydrogen-Ion Concentration , Lakes/microbiology , Microbiological Techniques , Sodium Chloride/metabolism , Temperature , Ultraviolet Rays
6.
Electron. j. biotechnol ; 18(6): 464-470, Nov. 2015. ilus, graf, tab
Article in English | LILACS | ID: lil-772292

ABSTRACT

Background Tannases are enzymes with biotechnological potential produced mainly by microorganisms as filamentous fungi. In this context, the production and characterization of a multi-tolerant tannase from Aspergillus carbonarius is described. Results The filamentous fungus A. carbonarius produced high levels of tannase when cultivated under solid-state fermentation using green tea leaves as substrate/carbon source and tap water at a 1:1 ratio as the moisture agent for 72 h at 30°C. Two tannase activity peaks were obtained during the purification step using DEAE-Cellulose. The second peak (peak II) was purified 11-fold with 14% recovery from a Sepharose CL-6B chromatographic column. The tannase from peak II (tannase II) was characterized as a heterodimeric glycoprotein of 134.89 kDa, estimated through gel filtration, with subunits of 65 kDa and 100 kDa, estimated through SDS-PAGE, and 48% carbohydrate content. The optimal temperature and pH for tannase II activity was 60°C and 5.0, respectively. The enzyme was fully stable at temperatures ranging from 20-60°C for 120 min, and the half-life (T1/2) at 75°C was 62 min. The activation energy was 28.93 kJ/mol. After incubation at pH 5.0 for 60 min, 75% of the enzyme activity was maintained. However, enzyme activity was increased in the presence of AgNO3 and it was tolerant to solvents and detergents. Tannase II exhibited a better affinity for methyl gallate (Km = 1.42 mM) rather than for tannic acid (Km = 2.2 mM). Conclusion A. carbonarius tannase presented interesting properties as, for example, multi-tolerance, which highlight its potential for future application.


Subject(s)
Aspergillus/enzymology , Carboxylic Ester Hydrolases/biosynthesis , Fermentation , Temperature , Kinetics , Hydrogen-Ion Concentration
7.
Electron. j. biotechnol ; 18(3): 143-147, May 2015. ilus, tab
Article in English | LILACS | ID: lil-750639

ABSTRACT

Background A sequential statistical strategy was used to optimize tannase production from Aspergillus tubingensis using tea stalks by solid-state fermentation. Results First, using a Plackett-Burman design, inoculum size and incubation time (among seven tested variables) were identified as the most significant factors for tannase yield. The effects of significant variables were further evaluated through a single steepest ascent experiment and central composite design with response surface analysis. Under optimal conditions, the experimental value of 84.24 units per gram of dry substrate (U/gds) closely matched the predicted value of 87.26 U/gds. Conclusions The result of the statistical approach was 2.09 times higher than the basal medium (40.22 U/gds). The results were fitted onto a second-order polynomial model with a correlation coefficient (R²) of 0.9340, which implied an adequate credibility of the model.


Subject(s)
Aspergillus/enzymology , Tea , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/biosynthesis , Analysis of Variance , Models, Statistical , Biomass , Fermentation
8.
Braz. j. microbiol ; 45(4): 1485-1492, Oct.-Dec. 2014. graf, tab
Article in English | LILACS | ID: lil-741304

ABSTRACT

Filamentous fungi are considered to be the most important group of microorganisms for the production of plant cell wall degrading enzymes (CWDE), in solid state fermentations. In this study, two fungal strains Aspergillus niger MS23 and Aspergillus terreus MS105 were screened for plant CWDE such as amylase, pectinase, xylanase and cellulases (β-glucosidase, endoglucanase and filterpaperase) using a novel substrate, Banana Peels (BP) for SSF process. This is the first study, to the best of our knowledge, to use BP as SSF substrate for plant CWDE production by co-culture of fungal strains. The titers of pectinase were significantly improved in co-culture compared to mono-culture. Furthermore, the enzyme preparations obtained from monoculture and co-culture were used to study the hydrolysis of BP along with some crude and purified substrates. It was observed that the enzymatic hydrolysis of different crude and purified substrates accomplished after 26 h of incubation, where pectin was maximally hydrolyzed by the enzyme preparations of mono and co-culture. Along with purified substrates, crude materials were also proved to be efficiently degraded by the cocktail of the CWDE. These results demonstrated that banana peels may be a potential substrate in solid-state fermentation for the production of plant cell wall degrading enzymes to be used for improving various biotechnological and industrial processes.


Subject(s)
Aspergillus/enzymology , Aspergillus/growth & development , Hydrolases/metabolism , Musa/metabolism , Musa/microbiology , Aspergillus/metabolism , Coculture Techniques , Fermentation
9.
Braz. j. microbiol ; 45(1): 97-104, 2014. ilus, tab
Article in English | LILACS | ID: lil-709484

ABSTRACT

Polygalacturonase and α-amylase play vital role in fruit juice industry. In the present study, polygalacturonase was produced by Aspergillus awamori Nakazawa MTCC 6652 utilizing apple pomace and mosambi orange (Citrus sinensis var mosambi) peels as solid substrate whereas, α-amylase was produced from A. oryzae (IFO-30103) using wheat bran by solid state fermentation (SSF) process. These carbohydrases were decolourized and purified 8.6-fold, 34.8-fold and 3.5-fold, respectively by activated charcoal powder in a single step with 65.1%, 69.8% and 60% recoveries, respectively. Apple juice was clarified by these decolourized and partially purified enzymes. In presence of 1% polygalacturonase from mosambi peels (9.87 U/mL) and 0.4% α-amylase (899 U/mL), maximum clarity (%T660nm = 97.0%) of juice was attained after 2 h of incubation at 50 ºC in presence of 10 mM CaCl2. Total phenolic content of juice was reduced by 19.8% after clarification, yet with slightly higher %DPPH radical scavenging property.


Subject(s)
Aspergillus/enzymology , Beverages , Food Handling/methods , Polygalacturonase/isolation & purification , Polygalacturonase/metabolism , alpha-Amylases/isolation & purification , alpha-Amylases/metabolism , Aspergillus/growth & development , Culture Media/chemistry , Free Radical Scavengers/analysis , Phenols/analysis , Temperature , Time Factors
10.
Braz. j. microbiol ; 44(4): 1089-1095, Oct.-Dec. 2013. graf, tab
Article in English | LILACS | ID: lil-705254

ABSTRACT

The influence of various oil cakes has been investigated for high level production of lipase using Aspergillus tamarii MTCC 5152. By solid state fermentation in wheat bran containing 2.5% w/w gingili oil cake at 70% v/w moisture content the fungus produced a maximal yield of lipase (758 ± 3.61 u/g) after 5 days of incubation using 2% v/w inoculum containing 10(6) spores/mL. Wheat bran and gingili oil cake with supplementation of gingili oil (1.0% w/w), glucose (0.5% w/w) and peptone (0.5% w/w) gives an increased enzyme production of 793 ± 6.56 u/g. The enzyme shows maximum activity at pH 7.0, temperature 50 °C and was stable between the pH 5.0-8.0 and temperature up to 60 °C. Crude lipase (3%) applied to tannery fleshing shows 92% fat solubility. The results demonstrate that fat obtained from tannery fleshing, a by-product of the leather industry has a high potential for biodiesel production and the proteinaceous residue obtained can be used as animal feed.


Subject(s)
Adipose Tissue/metabolism , Aspergillus/enzymology , Lipase/metabolism , Culture Media/chemistry , Hydrogen-Ion Concentration , Temperature
11.
Electron. j. biotechnol ; 16(3): 8-8, May 2013. ilus, tab
Article in English | LILACS | ID: lil-684006

ABSTRACT

Background: Inulinases have been extracted and characterized from inulin-storing tissues; however, production of microbial inulinases have recently draw much attention as they offer several industrial advantages. Many microorganisms, including filamentous fungi, yeast and bacteria have been claimed as inulinase producers. These hydrolases are usually inducible and their exo-acting forms may hydrolyze fructose polymers (inulin) and oligosaccharides such as sucrose and raffinose. Fungal inulinase extracts are often produced as stable mixture of highly active fructanhydrolases. From a practical prospective, the best known inulinases to date are those produced by species of Penicillium, Aspergillus and Kluyveromyces. Results: The production of extracellular inulinase by A. kawachii in liquid cultures, using either inulin or yacon derived materials as CES as well as inulinase inducers, is reported. In addition, a partial characterization of the enzyme activity is included. Conclusions: Yacon derived products, particularly yacon juice, added to the culture medium proved to be a good CES for fungal growth as well as an inducer of enzyme synthesis. Partial characterization of the enzyme revealed that it is quite stable in a wide range of pH and temperature. In addition, characterization of the reaction products revealed that this enzyme corresponds to an exo-type. These facts are promising considering its potential application in inulin hydrolysis for the production of high fructose syrups.


Subject(s)
Aspergillus/enzymology , Glycoside Hydrolases/metabolism , Temperature , Enzyme Stability , Bioreactors , Asteraceae , Batch Cell Culture Techniques , Hydrogen-Ion Concentration , Hydrolysis , Ions
12.
Braz. j. microbiol ; 44(2): 569-576, 2013. graf, tab
Article in English | LILACS | ID: lil-688590

ABSTRACT

The production of xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by Aspergillus awamori 2B.361 U2/1, a hyper producer of glucoamylase and pectinase, was evaluated using selected conditions regarding nitrogen nutrition. Submerged cultivations were carried out at 30 ºC and 200 rpm in growth media containing 30 g wheat bran/L as main carbon source and either yeast extract, ammonium sulfate, sodium nitrate or urea, as nitrogen sources; in all cases it was used a fixed molar carbon to molar nitrogen concentration of 10.3. The use of poor nitrogen sources favored the accumulation of xylanase, β-xylosidase and ferulic acid esterase to a peak concentrations of 44,880; 640 and 118 U/L, respectively, for sodium nitrate and of 34,580, 685 and 170 U/L, respectively, for urea. However, the highest β-glucosidase accumulation of 10,470 U/L was observed when the rich organic nitrogen source yeast extract was used. The maxima accumulation of filter paper activity, xylanase, β-xylosidase, ferulic acid esterase and β-glucosidase by A. awamori 2B.361 U2/1 was compared to that produced by Trichoderma reesei Rut-C30. The level of β-glucosidase was over 17-fold higher for the Aspergillus strain, whereas the levels of xylanase and β-xylosidase were over 2-fold higher. This strain also produced ferulic acid esterase (170 U/L), which was not detected in the T. reesei culture.


Subject(s)
Aspergillus/enzymology , Carboxylic Ester Hydrolases/metabolism , Xylosidases/metabolism , beta-Glucosidase/metabolism , Aspergillus/genetics , Aspergillus/growth & development , Carbon/metabolism , Culture Media/chemistry , Nitrogen/metabolism , Temperature
13.
Braz. j. microbiol ; 43(2): 456-466, Apr.-June 2012. ilus, graf, tab
Article in English | LILACS | ID: lil-644459

ABSTRACT

In this study, forty-two fungi from soil were isolated and tested for their carboxymethyl cellulase (CMCase) and xylanase activities. From all isolates, the fungal isolate FR60, which was identified as Aspergillus aculeatus Iizuka, showed high activities in both CMCase and xylanase with 517 mU/mg protein and 550 mU/mg protein, respectively. The crude enzyme from A. aculeatus Iizuka FR60 could hydrolyze several agricultural residues such as corncob, and sweet sorghum leaf and stalk at comparable rates with respect to the tested commercial enzymes and with a maximum rate in rice hull hydrolysis (29 μg sugar g-1 dry weight substrate mg-1 enzyme hr-1). The highest amount of glucose was obtained from corncob by using the crude enzyme from A. aculeatus Iizuka FR60 (10.1 g/100 g dry substrate). From overall enzymatic treatment results, the lowest sugar yield was from rice hulls treatment (1.6 g/100 g dry weight) and the highest amount of reducing sugar was obtained from rice straw treatment (15.3 g/100 g dry weight). Among tested agricultural wastes, rice hull could not be effectively hydrolyzed by enzymes, whereas sugarcane leaf and stalk, and peanut shell could be effectively hydrolyzed (30-31% total sugar comparing with total sugar yield from acid treatment).


Subject(s)
Aspergillus/enzymology , Aspergillus/isolation & purification , Cellulose, Oxidized/analysis , Cellulose, Oxidized/isolation & purification , Food , Oryza , Zea mays , Biomass , Enzyme Activation , Food Samples , Hydrolysis , Methods , Waste Products
14.
Electron. j. biotechnol ; 14(2): 2-2, Mar. 2011. ilus, tab
Article in English | LILACS | ID: lil-591932

ABSTRACT

The filamentous fungus A. phoenicis produced high levels of beta-D-fructofuranosidase (FFase) when grown for 72 hrs under Solid-State Fermentation (SSF), using soy bran moistened with tap water (1:0.5 w/v) as substrate/carbon source. Two isoforms (I and II) were obtained, and FFase II was purified 18-fold to apparent homogeneity with 14 percent recovery. The native molecular mass of the glycoprotein (12 percent of carbohydrate content) was 158.5 kDa with two subunits of 85 kDa estimated by SDS-PAGE. Optima of temperature and pH were 55ºC and 4.5. The enzyme was stable for more than 1 hr at 50ºC and was also stable in a pH range from 7.0 to 8.0. FFase II retained 80 percent of activity after storage at 4ºC by 200 hrs. Dichroism analysis showed the presence of random and beta-sheet structure. A. phoenicis FFase II was activated by Mn2+, Mg2+ and Co2+, and inhibited by Cu2+, Hg2+ and EDTA. The enzyme hydrolyzed sucrose, inulin and raffinose. Kd and Vmax values were 18 mM and 189 U/mg protein using sucrose as substrate.


Subject(s)
Aspergillus/enzymology , beta-Fructofuranosidase/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Hydrolysis , Industrial Microbiology , Kinetics , Substrates for Biological Treatment , Sucrose , Temperature , beta-Fructofuranosidase/isolation & purification
15.
IJB-Iranian Journal of Biotechnology. 2011; 9 (1): 50-55
in English | IMEMR | ID: emr-122388

ABSTRACT

The continuous production of polygalacturonases [PGases] that Exo-polygalacturonase [exo-PGase] and Endo-polygalacturonase [endo-PGase] are two members of this group by a strain of Aspergillus awamori in surface culture fermentation was investigated. Surface culture fermentation is usually done in batch mode. Wheat flour acted as a good substrate for the cultivation of the fungus and production of PGases in surface culture fermentation. Fermentation started in batch mode until mycelia completely occupied the medium following growth of the microorganism, after which it was turned to the continuous mode by the introduction of fresh feed. The process continued for 34 days, and the thickness of the microbial layer on the surface of the liquid medium became almost constant after approximately one week. The production of PGases, however, continued throughout the experiment, and maximum activities of 1.2 U/ml and 0.014 U/ml were obtained for exo-polygalacturonase [exo- PGase] and endo-polygalacturonase [endo-PGase], respectively. An increase in production was observed when a similar system was used with a line for medium recycling. Lowering the residence time to 12 h decreased the exo-PGase and endo-PGase activities. Reducing the residence time from 24 h to 12 h almost halved the concentrations of the enzymes at the outlet


Subject(s)
Aspergillus/enzymology , Aspergillus/growth & development , Fermentation , Triticum/metabolism , Biotechnology/methods , Culture Media/chemistry
16.
Electron. j. biotechnol ; 12(4): 4-5, Oct. 2009. ilus, tab
Article in English | LILACS | ID: lil-558547

ABSTRACT

Aspergillus parasiticus microbial type culture collection (MTCC)-2796, a new source of a-galactosidase is an efficient producer of enzyme in basic medium under submerged fermentation conditions. Maximum a-galactosidase production (156.25 Uml-1) was obtained when the basic medium is supplemented with galactose (0.5 percent w/v) and raffinose (0.5 percent w/v) as carbon source and yeast extract as nitrogen source. Enzyme production was also enhanced considerably in the presence of wheat bran (1.0 percent w/v). Enzyme secretion was strongly inhibited by the presence of Hg2+, Cu2+, and Co2+ in the medium and to some extent by Zn2+ and Ni2+, while marginal increase in the enzyme production was observed when Mg2+ and Mn2+ were added in the medium. Among amino acids checked (aparagine, cysteine, glutamine, leucine and proline), glutamine (1 mM) was found to be an enhancer for the enzyme production. The temperature and pH range for the production of enzyme were 25ºC to 35ºC and 6.5 to 7.5, respectively with maximum activity (50 Uml-1) at 30ºC and pH 6.5 under static fermentation condition.


Subject(s)
Aspergillus/enzymology , Aspergillus/metabolism , alpha-Galactosidase/metabolism , alpha-Galactosidase/chemical synthesis , Enzyme Activators/agonists , Enzyme Activators/chemical synthesis , Fermentation , Culture Media, Conditioned/metabolism
17.
Electron. j. biotechnol ; 11(4): 8-9, Oct. 2008. ilus, tab
Article in English | LILACS | ID: lil-531926

ABSTRACT

The aim of this work was to describe growth dynamics, substrate depletion and polygalacturonases production by Aspergillus flavipes FP-500 in batch cultures by means of unstructured models. The microorganism was cultivated on several mono- di- and poly- saccharides, and then the culture development modeled with Monod and Leudeking-Piret equations. The kinetic parameters related to the models (µmax, ãx/s, alpha and beta) were obtained by minimizing the quadratic residuals function with a simplex algorithm. An accurate description of experimental data was attained with the proposed models. Besides, modeling provided significant kinetic information on microbial degradation of complex substrates, such as the correlation between specific growth rate µmax and production yield á, suggesting that A. flavipes FP-500 polygalacturonases are actually constitutive, but also that there is a certain degree of induciblility in these enzymatic activities.


Subject(s)
Aspergillus/enzymology , Aspergillus/metabolism , Pectins/pharmacokinetics , Pectins/metabolism , Polygalacturonase/pharmacokinetics , Polygalacturonase/metabolism , Biomass , Biodegradation, Environmental , Hydrogen-Ion Concentration
18.
Braz. j. microbiol ; 39(1): 108-114, Jan.-Mar. 2008. graf, tab
Article in English | LILACS | ID: lil-480685

ABSTRACT

Glucoamylase is widely used in the food industry to produce high glucose syrup, and also in fermentation processes for production beer and ethanol. In this work the productivity of the glucoamylase of Aspergillus awamori expressed by the yeast Saccharomyces cerevisiae, produced in submerged fermentation using different starches, was evaluated and characterized physico-chemically. The enzyme presented high specific activity, 13.8 U/mgprotein or 2.9 U/mgbiomass, after 48 h of fermentation using soluble starch as substrate. Glucoamylase presented optimum activity at temperature of 55ºC, and, in the substratum absence, the thermostability was for 1h at 50ºC. The optimum pH of activity was pH 3.5 - 4.0 and the pH stability between 5.0 and 7.0. The half life at 65ºC was at 30.2 min, and the thermal energy of denaturation was 234.3 KJ mol-1. The hydrolysis of different substrate showed the enzyme's preference for the substrate with a larger polymerization degree. The gelatinized corn starch was the substratum most susceptible to the enzymatic action.


A glucoamilase é amplamente utilizada na indústria de alimentos no processamento do amido para a produção de xarope com alto teor de glicose e também muito empregada nos processos de fermentação para produção de cerveja e etanol. Neste trabalho a glucoamilase de Aspergillus awamori expressa em Saccharomyces cerevisiae produzida sob fermentação líquida foi avaliada quanto à produtividade em diferentes amidos e caracterizada físico-quimicamente. A enzima apresentou alta atividade específica de 13,8 U/mg proteína e de 2,9 U/mg biomassa ao final de 48 h de fermentação em meio contendo amido solúvel. A glucoamilase apresentou temperatura ótima de atividade a 55ºC, e temperatura de desnaturação térmica na ausência de substrato por 1h a 50ºC. O pH ótimo de atividade foi na faixa de 3,5 - 4,0 e a estabilidade ao pH entre os valores 5,0 e 7,0. A meia vida a 65ºC foi 30,2 min., e a energia de desnaturação foi de 234.3 KJ mol-1. A hidrólise em diferentes substratos mostrou a preferência da enzima pelos substratos com maior grau de polimerização, sendo o amido de milho gelatinizado o substrato preferencial à ação enzimática.


Subject(s)
Aspergillus/enzymology , Aspergillus/isolation & purification , Carbon/analysis , Fermentation , /analysis , In Vitro Techniques , Starch and Fecula , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/isolation & purification , Methods
19.
Biofarbo ; 15(15): 29-36, dic. 2007. tab, graf
Article in Spanish | LILACS | ID: lil-507163

ABSTRACT

las enzimas son catalizadores biológicos, es decir proteínas que tienen la capacidad de acelerar ciertas reacciones químicas. En los últimos años su uso en gran cantidad de industrias a hadquirido gran relevancia. El desarrollo de técnicas y métodos para el desarrollo de estos procesos han sido un importante requisito para el avance en la enzimología en las últimas tres décadas y por muchos es considerado un arte.


Subject(s)
Aspergillus niger/enzymology , Aspergillus/enzymology , Catalase/analysis
20.
Indian J Biochem Biophys ; 2006 Feb; 43(1): 48-51
Article in English | IMSEAR | ID: sea-26270

ABSTRACT

The activities of ligninperoxidases from Penicillium citrinum MTCC 3565, Fusarium oxysporum MTCC 3379 and Aspergillus terreus MTCC 3374 have been assayed and the enzymatic characteristics like Km, pH and temperature optima using n-propanol as the substrate have been reported. The results suggest that n-propanol can substitute veratryl alcohol as substrate for assaying ligninperoxidase activities from different fungal strains, without affecting the enzymatic characteristics. The above strains were selected, as they were known to secrete ligninperoxidase in the liquid culture medium.


Subject(s)
1-Propanol/metabolism , Aspergillus/enzymology , Enzyme Activation/physiology , Fusarium/enzymology , Hydrogen-Ion Concentration , Kinetics , Penicillium/enzymology , Peroxidases/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL